Control and optimization of a staged laser-wakefield accelerator
نویسندگان
چکیده
We report results of an experimental study of laser-wakefield acceleration of electrons, using a staged device based on a double-jet gas target that enables independent injection and acceleration stages. This novel scheme is shown to produce stable, quasi-monoenergetic, and tunable electron beams. We show that optimal accelerator performance is achieved by systematic variation of five critical parameters. For the injection stage, we show that the amount of trapped charge is controlled by the gas density, composition, and laser power. For the acceleration stage, the gas density and the length of the jet are found to determine the final electron energy. This independent control over both the injection and acceleration processes enabled independent control over the charge and energy of the accelerated electron beam while preserving the quasi-monoenergetic character of the beam. We show that the charge and energy can be varied in the ranges of 2–45 pC, and 50–450 MeV, respectively. This robust and versatile electron accelerator will find application in the generation of high-brightness and controllable x-rays, and as the injector stage for more conventional devices. & 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
منابع مشابه
شبیهسازی ذرهای شتاب دادن الکترونها در پلاسمای کم چگال
One of the interesting Laser-Plasma phenomena, when the laser power is high and ultra intense, is the generation of large amplitude plasma waves (Wakefield) and electron acceleration. An intense electromagnetic laser pulse can create plasma oscillations through the action of the nonlinear pondermotive force. electrons trapped in the wake can be accelerated to high energies, more than 1 TW. Of t...
متن کاملGeneration of tunable, 100–800 MeV quasi-monoenergetic electron beams from a laser-wakefield accelerator in the blowout regimea)
Articles you may be interested in Generation of electron beams from a laser wakefield acceleration in pure neon gas High-quality electron beam from laser wake-field acceleration in laser produced plasma plumes Appl. In this paper, we present results on a scalable high-energy electron source based on laser wakefield acceleration. The electron accelerator using 30–80 TW, 30 fs laser pulses, opera...
متن کاملThree electron beams from a laser-plasma wakefield accelerator and the energy apportioning question
Laser-wakefield accelerators are compact devices capable of delivering ultra-short electron bunches with pC-level charge and MeV-GeV energy by exploiting the ultra-high electric fields arising from the interaction of intense laser pulses with plasma. We show experimentally and through numerical simulations that a high-energy electron beam is produced simultaneously with two stable lower-energy ...
متن کاملHigh-Flux Femtosecond X-Ray Emission from Controlled Generation of Annular Electron Beams in a Laser Wakefield Accelerator.
Annular quasimonoenergetic electron beams with a mean energy in the range 200-400 MeV and charge on the order of several picocoulombs were generated in a laser wakefield accelerator and subsequently accelerated using a plasma afterburner in a two-stage gas cell. Generation of these beams is associated with injection occurring on the density down ramp between the stages. This well-localized inje...
متن کاملOverview of Plasma-Based Accelerator Concepts - Plasma Science, IEEE Transactions on
An overview is given of the physics issues relevant to the plasma wakefield accelerator, the plasma beat-wave accelerator, the laser wakefield accelerator, including the self-modulated regime, and wakefield accelerators driven by multiple electron or laser pulses. Basic properties of linear and nonlinear plasma waves are discussed, as well as the trapping and acceleration of electrons in the pl...
متن کامل